Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.066
Filtrar
1.
Ecol Lett ; 27(4): e14420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578004

RESUMO

Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile-specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation.


Assuntos
Aves Canoras , Animais , Aves Canoras/genética , Migração Animal , Fenótipo , Estações do Ano
2.
Proc Biol Sci ; 291(2021): 20240021, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628119

RESUMO

Conventional life-history theory predicts that energy-demanding events such as reproduction and migration must be temporally segregated to avoid resource limitation. Here, we provide, to our knowledge, the first direct evidence of 'itinerant breeding' in a migratory bird, an incredibly rare breeding strategy (less than 0.1% of extant bird species) that involves the temporal overlap of migratory and reproductive periods of the annual cycle. Based on GPS-tracking of over 200 female American woodcock, most female woodcock (greater than 80%) nested more than once (some up to six times) with short re-nest intervals, and females moved northwards on average 800 km between first and second nests, and then smaller distances (ca 200+ km) between subsequent nesting attempts. Reliance on ephemeral habitat for breeding, ground-nesting and key aspects of life history that reduce both the costs of reproduction and migration probably explain the prevalence of this rare phenotype in woodcock and why itinerant breeding so rarely occurs in other bird species.


Assuntos
Charadriiformes , Traços de História de Vida , Animais , Feminino , Estações do Ano , Reprodução , Aves , Ecossistema , Migração Animal
3.
Mol Ecol ; 33(9): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581173

RESUMO

Wildlife populations are becoming increasingly fragmented by anthropogenic development. Small and isolated populations often face an elevated risk of extinction, in part due to inbreeding depression. Here, we examine the genomic consequences of urbanization in a caracal (Caracal caracal) population that has become isolated in the Cape Peninsula region of the City of Cape Town, South Africa, and is thought to number ~50 individuals. We document low levels of migration into the population over the past ~75 years, with an estimated rate of 1.3 effective migrants per generation. As a consequence of this isolation and small population size, levels of inbreeding are elevated in the contemporary Cape Peninsula population (mean FROH = 0.20). Inbreeding primarily manifests as long runs of homozygosity >10 Mb, consistent with the effects of isolation due to the rapid recent growth of Cape Town. To explore how reduced migration and elevated inbreeding may impact future population dynamics, we parameterized an eco-evolutionary simulation model. We find that if migration rates do not change in the future, the population is expected to decline, though with a low projected risk of extinction. However, if migration rates decline or anthropogenic mortality rates increase, the potential risk of extinction is greatly elevated. To avert a population decline, we suggest that translocating migrants into the Cape Peninsula to initiate a genetic rescue may be warranted in the near future. Our analysis highlights the utility of genomic datasets coupled with computational simulation models for investigating the influence of gene flow on population viability.


Assuntos
Fluxo Gênico , Genética Populacional , Endogamia , Dinâmica Populacional , Animais , África do Sul , Densidade Demográfica , Urbanização , Migração Animal
4.
PLoS One ; 19(4): e0299954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635514

RESUMO

For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species' response to climate change and rapid land-use changes.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Feminino , Migração Animal/fisiologia , Brasil , Cruzamento , Estações do Ano
5.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657063

RESUMO

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Assuntos
Migração Animal , Genômica , Vento , Animais , Genômica/métodos , Hemípteros/genética , Genoma de Inseto , Genética Populacional
6.
Sci Rep ; 14(1): 9456, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658588

RESUMO

Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.


Assuntos
Migração Animal , Mitocôndrias , Pardais , Animais , Migração Animal/fisiologia , Pardais/fisiologia , Mitocôndrias/metabolismo , Estações do Ano , Fosforilação Oxidativa , Respiração Celular , Metabolismo Energético
7.
Sci Rep ; 14(1): 6703, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509089

RESUMO

The decline of the iconic monarch butterfly (Danaus plexippus) in North America has motivated research on the impacts of land use and land cover (LULC) change and climate variability on monarch habitat and population dynamics. We investigated spring and fall trends in LULC, milkweed and nectar resources over a 20-year period, and ~ 30 years of climate variables in Mexico and Texas, U.S. This region supports spring breeding, and spring and fall migration during the annual life cycle of the monarch. We estimated a - 2.9% decline in milkweed in Texas, but little to no change in Mexico. Fall and spring nectar resources declined < 1% in both study extents. Vegetation greenness increased in the fall and spring in Mexico while the other climate variables did not change in both Mexico and Texas. Monarch habitat in Mexico and Texas appears relatively more intact than in the midwestern, agricultural landscapes of the U.S. Given the relatively modest observed changes in nectar and milkweed, the relatively stable climate conditions, and increased vegetation greenness in Mexico, it seems unlikely that habitat loss (quantity or quality) in Mexico and Texas has caused large declines in population size or survival during migration.


Assuntos
Asclepias , Borboletas , Animais , México , Texas , Néctar de Plantas , Migração Animal , Melhoramento Vegetal , Ecossistema
8.
Sci Total Environ ; 926: 171945, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531456

RESUMO

Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.


Assuntos
Passeriformes , Aves Canoras , Animais , Aves Canoras/fisiologia , Passeriformes/fisiologia , Tempo (Meteorologia) , Estações do Ano , Mudança Climática , Reprodução , Migração Animal/fisiologia
9.
Curr Biol ; 34(5): R199-R201, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471448

RESUMO

Migrating species are particularly vulnerable to habitat loss. A new study shows that migrating birds use seasonally different stopover hotspots, which need to be protected better.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , Ecossistema , Conservação dos Recursos Naturais
10.
J Anim Ecol ; 93(4): 377-392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482727

RESUMO

Climate change has well-documented, yet variable, influences on the annual movements of migratory birds. The effects of climate change on fall migration remains understudied compared with spring but appears to be less consistent among species, regions and years. Changes in the pattern and timing of waterfowl migration in particular may result in cascading effects on ecosystem function, and socio-economic and cultural outcomes. We investigated changes in the migration of 15 waterfowl species along a major flyway corridor of continental importance in northeastern North America using 43 years of community-science data. We built spatially- and temporally explicit hierarchical generative additive models for each species and demonstrated that climate, specifically the interaction between minimum temperature and precipitation, significantly influences migration phenology for most species. Certain species' migratory movements responded to specific temperature thresholds (climate migrants) and others reacted more to the interaction of temperature and precipitation (extreme event migrants). There are already significant changes in the fall migration phenology of common waterfowl species with high ecological and economic importance, which may simply increase in the context of a changing climate. If not addressed, climate change could induce mismatches in management, regulations and population surveys which would negatively impact the hunting industry. Our findings highlight the importance of considering species-specific spatiotemporal scales of effect on climate on migration and our methods can be widely adapted to quantify and forecast climate-driven changes in wildlife migration.


Les changements climatiques ont des influences bien documentées, mais variables, sur les mouvements annuels des oiseaux migrateurs. Les effets des changements climatiques sur les migrations automnales demeurent peu étudiés par rapport aux migrations printanières, mais il semble qu'ils soient moins constants d'une espèce, d'une région et d'une année à l'autre. Les changements dans le patron et le calendrier de la migration de la sauvagine en particulier peuvent avoir des effets en chaîne sur la fonction des écosystèmes et des impacts socio­économiques et culturels. Nous avons étudié les changements dans la migration de 15 espèces de sauvagine le long d'un corridor de migration d'importance continentale dans le nord­est de l'Amérique du Nord, en utilisant 43 ans de données scientifiques communautaires. Nous avons construit des modèles additifs généralisés hiérarchiques spatialement et temporellement explicites pour chaque espèce et avons démontré que le climat, en particulier l'interaction entre la température minimale et les précipitations, influence de manière significative la phénologie de la migration pour la plupart des espèces. Les mouvements migratoires de certaines espèces répondent à des seuils de température spécifiques (migrateurs climatiques) et d'autres réagissent davantage à l'interaction entre la température et les précipitations (migrateurs d'événements extrêmes). La phénologie des migrations automnales d'espèces de sauvagine commune qui ont une grande importance écologique et économique connaît déjà des changements importants, qui pourraient simplement s'accentuer dans le cadre des changements climatiques. S'ils ne sont pas pris en compte, les changements climatiques pourraient induire des décalages dans la gestion, les réglementations et les enquêtes de population, ce qui aurait un impact négatif sur l'industrie de la chasse. Nos résultats soulignent l'importance de prendre en compte les échelles spatio­temporelles spécifiques sur la migration et nos méthodes peuvent être largement adaptées pour quantifier et prévoir les changements induits par le climat dans la migration de la faune.


Assuntos
Migração Animal , Ecossistema , Animais , Estações do Ano , Temperatura , Mudança Climática
11.
PLoS One ; 19(3): e0300479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512887

RESUMO

Night-migrating songbirds utilize the Earth's magnetic field to help navigate to and from their breeding sites each year. A region of the avian forebrain called Cluster N has been shown to be activated during night migratory behavior and it has been implicated in processing geomagnetic information. Previous studies with night-migratory European songbirds have shown that neuronal activity at Cluster N is higher at night than during the day. Comparable work in North American migrants has only been performed in one species of swallows, so extension of examination for Cluster N in other migratory birds is needed. In addition, it is unclear if Cluster N activation is lateralized and the full extent of its boundaries in the forebrain have yet to be described. We used sensory-driven gene expression based on ZENK and the Swainson's thrush, a night-migratory North American songbird, to fill these knowledge gaps. We found elevated levels of gene expression in night- vs. day-active thrushes and no evidence for lateralization in this region. We further examined the anatomical extent of neural activation in the forebrain using 3D reconstruction topology. Our findings demonstrate that Swainson's thrushes possess an extensive bilateral night-activated Cluster N region in the forebrain similar to other European avian species, suggesting that Cluster N is highly conserved in nocturnal migrants.


Assuntos
Aves Canoras , Animais , Aves Canoras/genética , Prosencéfalo , Neurônios , América do Norte , Migração Animal/fisiologia
14.
PLoS One ; 19(3): e0299463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457430

RESUMO

The study of nocturnal bird migration brings observational challenges because of reduced visibility and observability of birds at night. Remote sensing tools, especially radars, have long been the preferred choice of scientists to study nocturnal migrations. A major downside of these remote sensing tools is the lack of species-level information. With technological advances in recent decades and with improved accessibility and affordability of acoustic tools, sound recordings have steeply increased in popularity. In Europe, there is no exhaustive qualitative and quantitative evaluation of the content of such acoustic databases and therefore the value for migration science and migration-related applications, such as bird collision hazard assessments, is mostly unknown. In the present work we compared migration schedules estimated from citizen science data with quantitative temporal occurrence of species in four years of acoustic recordings. Furthermore, we contrasted acoustic recordings with citizen science observations and weather radar data from one spring and one autumn season to assess the qualitative and quantitative yield of acoustic recordings for migration-related research and applications. Migration intensity estimated from weather radar data correlated best at low levels with acoustic records including all species in spring while in autumn passerine species showed stronger correlation than the entire species composition. Our findings identify a minor number of species whose call records may be eligible for applications derived from acoustics. Especially the highly vocal species Song thrush and Redwing showed relatively good correlations with radar and citizen science migration schedules. Most long-distance passerine migrants and many other migrants were not captured by acoustics and an estimated seasonal average of about 50% of nocturnally migrating passerine populations remained undetected. Overall, the ability of acoustic records to act as a proxy of overall migration dynamics is highly dependent on the migration period and species involved.


Assuntos
Ciência do Cidadão , Radar , Migração Animal , Tempo (Meteorologia) , Estações do Ano
15.
Ecol Lett ; 27(2): e14392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400796

RESUMO

Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL. Using an individual-based model of movement and metabolism, we compared fitness-optimized trade-offs among migration strategies. We found annual experienced seasonality modulated by migratory movements and distance between end-points primarily drove POL differentiation through developmental and migration phenology trade-offs. Similarly, our analysis of empirically estimated metabolic data from 265 bird species suggested seasonal niche tracking and migration distance interact to drive POL. We show multiple viable life-history strategies are conducive to a migratory lifestyle. Overall, our findings suggest metabolism mediates complex interactions between behaviour, environment and life history.


Assuntos
Traços de História de Vida , Animais , Estações do Ano , Reprodução , Aves , Fenótipo , Migração Animal
16.
Oecologia ; 204(3): 559-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363323

RESUMO

Migration is an energetically challenging and risky life history stage for many animals, but could be supported by dietary choices en route, which may create opportunities to improve body and physiological condition. However, proposed benefits of diet shifts, such as between seasonally available invertebrates and fruits, have received limited investigation in free-living animals. We quantified diet composition and magnitude of autumn diet shifts over two time periods in two closely-related species of migratory songbirds on stopover in the northeastern U.S. (Swainson's thrush [Catharus ustulatus], long-distance migrant, N = 83; hermit thrush [C. guttatus], short-distance migrant, N = 79) and used piecewise structural equation models to evaluate the relationships among (1) migration timing, (2) dietary behavior, and (3) morphometric and physiological condition indices. Tissue isotope composition indicated that both species shifted towards greater fruit consumption. Larger shifts in recent weeks corresponded to higher body condition in Swainson's, but not hermit thrushes, and condition was more heavily influenced by capture date in Swainson's thrushes. Presence of "high-antioxidant" fruits in fecal samples was unrelated to condition in Swainson's thrushes and negatively related to multiple condition indices in hermit thrushes, possibly indicating the value of fruits during migration is related more to their energy and/or macronutrient content than antioxidant content. Our results suggest that increased frugivory during autumn migration can support condition, but those benefits might depend on migration strategy: a longer-distance, more capital-dependent migration strategy could require stricter regulation of body condition aided by increased fruit consumption.


Assuntos
Aves Canoras , Animais , Aves Canoras/fisiologia , Frutas , Antioxidantes , Migração Animal , Invertebrados , Estações do Ano , Dieta/veterinária
17.
Oecologia ; 204(3): 613-624, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400948

RESUMO

When wintering at different sites, individuals from the same breeding population can experience different conditions, with costs and benefits that may have implications throughout their lifetime. Using a dataset from a longitudinal study on Eurasian Spoonbills from southern France, we explored whether survival rate varied among individuals using different wintering sites. In the last 13 years, more than 3000 spoonbills have been ringed as chicks in Camargue. These birds winter in five main regions that vary in both migratory flyway (East Atlantic vs. Central European) and migration distance (long-distance vs. short-distance vs. resident). We applied Cormack-Jolly-Seber models and found evidence for apparent survival to correlate with migration distance, but not with flyway. During the interval between the first winter sighting and the next breeding period, long-distance migrants had the lowest survival, independently of the flyway taken. Additionally, as they age, spoonbills seem to better cope with migratory challenges and wintering conditions as no differences in apparent survival among wintering strategies were detected during subsequent years. As dispersal to other breeding colonies was rarely observed, the lower apparent survival during this period is likely to be partly driven by lower true survival. This supports the potential role of crossing of natural barriers and degradation of wintering sites in causing higher mortality rates as recorded for a variety of long-distance migrants. Our work confirms variation in demographic parameters across winter distribution ranges and reinforces the importance of longitudinal studies to better understand the complex demographics of migratory species.


Assuntos
Migração Animal , Aves , Humanos , Animais , Estudos Longitudinais , França , Estações do Ano
18.
Sci Total Environ ; 922: 171304, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423307

RESUMO

Hydropower plants commonly impede the downstream migration of Atlantic salmon (Salmo salar) kelts. Thus, understanding the effects of hydraulic conditions on kelt behaviour and passage performance at dams is crucial for developing effective mitigation measures. In this study, we investigated the influence of hydraulic conditions on kelt passage performance and swimming behaviour at a Norwegian hydropower plant. We combined biological data from 48 kelts collected via acoustic telemetry with hydraulic data modelled using computational fluid dynamics. We assessed kelt passage performance using metrics such as time-to-pass, total number of detections, and total number of detections per day. Additionally, we analysed swimming depths and speeds in relation to the hydraulic conditions created by different dam operating conditions. We found that the dam operation schedule impacted the kelts' ability to find a route past the dam. Though kelts could have passed the dam throughout the study period via a submerged pipe at the dam (which had seemingly sufficient discharge for the kelts to find), 98 % of the kelts instead waited for a spill gate to open partway through the study period. The swimming depth analysis indicated diel variation, with kelts swimming nearer to the water surface during the night. We found that swimming speed increased with increasing kelt body length, particularly under high turbulence kinetic energy and during the day. Furthermore, kelts swam faster as water velocity increased, but slowed down again as turbulence intensity increased. Our findings reveal the effects of hydraulic conditions and dam operations on the migration behaviour of Atlantic salmon kelts. This provides valuable insights for developing strategies to optimise dam operations and improve fish passage performance, including the need to spill enough water to increase passage success and will contribute to sustainable management of Atlantic salmon populations in regulated rivers.


Assuntos
Salmo salar , Animais , Natação , Rios , Migração Animal , Água
19.
Ecol Lett ; 27(2): e14380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348625

RESUMO

Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology-including the onset of spring, spring duration, interannual variability, and their temporal changes-as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green-up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index-based spring green-up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.


Assuntos
Migração Animal , Mudança Climática , Animais , Estações do Ano , Europa (Continente) , Aves , Temperatura
20.
Nature ; 626(7998): 319-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326596

RESUMO

Late Pleistocene ice-age climates are routinely characterized as having imposed moisture stress on low- to mid-latitude ecosystems1-5. This idea is largely based on fossil pollen evidence for widespread, low-biomass glacial vegetation, interpreted as indicating climatic dryness6. However, woody plant growth is inhibited under low atmospheric CO2 (refs. 7,8), so understanding glacial environments requires the development of new palaeoclimate indicators that are independent of vegetation9. Here we show that, contrary to expectations, during the past 350 kyr, peaks in southern Australian climatic moisture availability were largely confined to glacial periods, including the Last Glacial Maximum, whereas warm interglacials were relatively dry. By measuring the timing of speleothem growth in the Southern Hemisphere subtropics, which today has a predominantly negative annual moisture balance, we developed a record of climatic moisture availability that is independent of vegetation and extends through multiple glacial-interglacial cycles. Our results demonstrate that a cool-moist response is consistent across the austral subtropics and, in part, may result from reduced evaporation under cool glacial temperatures. Insofar as cold glacial environments in the Southern Hemisphere subtropics have been portrayed as uniformly arid3,10,11, our findings suggest that their characterization as evolutionary or physiological obstacles to movement and expansion of animal, plant and, potentially, human populations10 should be reconsidered.


Assuntos
Ecossistema , Umidade , Camada de Gelo , Animais , Humanos , Migração Animal , Austrália , Temperatura Baixa , Clima Desértico , História Antiga , Plantas , Pólen , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...